Evolian: Evolutionary Optimization Based on Lagrangian with Constraint Scaling
نویسندگان
چکیده
In this paper, an evolutionary optimization method, Evolian, is proposed for the general constrained optimization problem, which incorporates the concept of (1) a multi-phase optimization process and (2) constraint scaling techniques to resolve problem of ill-conditioning. In each phase of Evolian, the typical evolutionary programming (EP) is performed using an augmented Lagrangian objective function with a penalty parameter fixed. If there is no improvement in the best objective function in one phase, another phase of Evolian is performed after scaling the constraints and then updating the Lagrange multipliers and penalty parameter. This procedure is repeated until a satisfactory solution is obtained. Computer simulation results indicate that Evolian gives outperforming or at least reasonable results for multivariable heavily constrained function optimization as compared to other evolutionary computation-based methods.
منابع مشابه
Multiple Lagrange Multiplier Method for Constrained Evolutionary Optimization
One of the well-known problems in evolutionary search for solving optimization problem is the premature convergence. The general constrained optimization techniques such as hybrid evolutionary programming, two{phase evolutionary programming, and Evolian algorithms are not safe from the same problem in the rst phase. To overcome this problem, we apply the sharing function to the Evolian algorith...
متن کاملPrimal-Dual Lagrangian Transformation method for Convex Optimization
Received: date / Revised version: date Abstract. A class Ψ of strongly concave and smooth functions ψ : R → R with specific properties is used to transform the terms of the classical Lagrangian associated with the constraints. The transformation is scaled by a positive vector of scaling parameters, one for each constraint. Each step of the Lagrangian Transformation (LT) method alternates uncons...
متن کاملLinear Evolutionary Algorithm
During the past three decades, global optimization problems (including single-objective optimization problems (SOP) and multi-objective optimization problems (MOP)) have been intensively studied not only in Computer Science, but also in Engineering. There are many solutions in literature, such as gradient projection method [1-3], Lagrangian and augmented Lagrangian penalty methods [4-6], and ag...
متن کاملAn Evolutionary Algorithm for Constrained Optimization
In this paper we present an evolutionary algorithm for constrained optimization. The algorithm is based on nondominance of solutions separately in the objective and constraint space and uses effective mating strategies to improve solutions that are weak in either. Since the methodology is based on nondominance, scaling and aggregation affecting conventional penalty function methods for constrai...
متن کاملAn Evolutionary Algorithm with a Multilevel Pairing Strategy for Single and Multiobjective Optimization
This paper presents an evolutionary algorithm that incorporates a multilevel pairing strategy to solve single and multiobjective optimization problems. The algorithm is based on nondominance of solutions separately in the objective and the constraint space and uses cooperative mating strategies between solutions. Since the methodology is based on nondominance separately in the objective and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997